基于深度学习的海水养殖遥感动态监测系统设计与实现

    Design and Implementation of a Deep Learning-Based Remote Sensing Dynamic Monitoring System for Marine Aquaculture

    • 摘要: 为快速、准确、大范围地获取海水养殖空间分布与动态变化,设计了一套基于深度学习的海水养殖遥感动态监测系统。采用C#语言,在Microsoft Visual Studio 2012开发平台下开发,集成ArcGIS Engine、DevExpress组件以及深度学习养殖区提取模型,构建了一个含遥感数据预处理、海水养殖智能提取、空间分析及专题图制图功能于一体的综合平台。文章对海水养殖遥感动态监测系统的需求设计、功能模块设计、开发环境以及系统实现等进行了详细的阐述,并以福建省诏安湾为例,基于GF-2遥感影像,应用MSU-ResUnet模型,快速、高精度提取了2020年诏安湾海上筏式、网箱养殖区分布,并进行规划符合性分析。该系统能够快速、高精度地完成大范围海水养殖区域信息的提取与动态分析,提升了养殖信息提取工作的自动化水平与效率,可为近海养殖规划管理、环境保护提供科学、直观的决策支持。

       

      Abstract: In order to obtain the spatial distribution and dynamic change of Marine aquaculture quickly, accurately and in a large range, this study designed a remote sensing dynamic monitoring system based on deep learning. Using C# and Microsoft Visual Studio 2012, this study developed an integrated platform incorporating ArcGIS Engine, DevExpress components, and a deep learning-based aquaculture zone extraction model. The platform combines remote sensing data preprocessing, intelligent seawater aquaculture extraction, spatial analysis, and thematic mapping. This paper details the system's functional requirements, module design, development environment, and implementation features. Using GF-2 remote sensing imagery, the MSU-ResUnet model was applied to rapidly and accurately map the distribution of raft and cage aquaculture zones in Zhao'an Bay, Fujian Province, in 2020, followed by a compliance analysis for planning. The system achieves rapid and high-precision extraction and dynamic analysis of large-scale marine aquaculture zones, significantly enhancing automation and efficiency in aquaculture information extraction. It provides scientific and intuitive decision support for coastal aquaculture planning management and environmental protection.

       

    /

    返回文章
    返回