不同前处理方法对ICP-MS法测定热带水果中主要重金属元素的影响

    Effects of Different Pretreatment Methods on the Determination of Major Heavy Metal Elements in Tropical Fruits by ICP-MS Method

    • 摘要: 分别采用微波消解法、湿式消解法以及干法灰化法对水果样品进行前处理,并建立最佳消解方法,然后采用电感耦合等离子体质谱法(ICP-MS)对不同前处理样品中的Pb、Cd、Cr、Ni等4种元素进行检测分析。结果表明:Pb、Cd、Cr、Ni等4种元素经过微波消解后的方法检出限分别为0.029 0、0.002 6、0.021 0、0.250 0 μg·L-1,相对标准偏差均小于2.5%,加标回收率为88.1%~108.3%;4种元素经过湿法消解后的方法检出限为0.028 0、0.002 4、0.018 0、0.210 0 μg·L-1,相对标准偏差均小于3.5%,加标回收率为86.7%~106.9%;4种元素经过干法灰化法后的方法检出限为0.031 0、0.002 8、0.023 0、0.250 0 μg·L-1,相对标准偏差均小于3.5%,加标回收率为86.6%~111.5%。这3种前处理方法与ICP-MS法结合均能对热带水果中重金属元素进行较为准确的检测,微波消解法具有检测结果准确、耗时少、操作简便等优点;湿式消解法具有方法检出限低、结果准确且重现性好等优点;干法灰化法具备结果准确等优点,但耗时较长。

       

      Abstract: Microwave digestion, wet digestion and dry digestion were used for the pretreatment of the fruit samples, and the best digestion method was established. Then, four elements including Pb, Cd, Cr and Ni in the samples with different pretreatment methods were detected and analyzed by using ICP-MS method. The results showed that the method detection limits of Pb, Cd, Cr and Ni after microwave digestion were respectively 0.029 0, 0.002 6, 0.021 0 and 0.250 0 μg·L-1, and the relative standard deviations were all less than 2.5%, while the adding standard recovery was 88.1%-108.3%. The method detection limits of four elements after wet digestion were 0.028 0, 0.002 4, 0.018 0, 0.21 μg·L-1, and the relative standard deviations were all less than 3.5%, while the adding standard recovery was 86.7%-106.9%. The method detection limits of four elements after dry digestion were 0.031 0、0.002 8、0.023 0、0.250 0 μg·L-1, and the r relative standard deviations were all less than 3.5%, while the adding standard recovery was 86.6%-111.5%. By combining with ICP-MS method, the three pretreatment methods could all be used for the accurate detection of heavy metal elements in tropical fruits. Microwave digestion method had the advantages of accurate detection results, less time consumption and simple & convenient operation. Wet digestion method had the advantages of low method detection limits, accurate results and good reproducibility. Dry digestion method had the advantages of accurate results and more time consumption.

       

    /

    返回文章
    返回