番茄根内生细菌的促生及其优势种群的筛选和分析

    Screening and Analysis on the Growth Promotion of Endophytic Bacteria in Tomato Roots and its Dominant Population

    • 摘要: 以从番茄植株分离出的46株内生细菌为研究对象,采用番茄根内生细菌单独侵染番茄种子,并研究其对番茄植株生长的影响,进一步利用测试内生细菌的16S rDNA序列结合之前公开番茄根内核心OTU (Operational Taxonomic Unit)序列构建系统发育树,分析主要促生长内生细菌的种类与丰度。促生试验表明,测试内生细菌均对番茄植株鲜重均有促进作用,其中芽孢杆菌(3株)、假单胞菌(2株)、黄单胞菌(1株)以及根瘤菌(2株)对番茄植株的鲜重具有显著性促进(P < 0.05),而GF12与对照相比对鲜重的促进最为显著(P < 0.01),GF12内生细菌对番茄植株鲜重的增加为对照的1.69倍;对株高具有显著性促进的内生菌株共有9株,分属芽孢杆菌(5株)、假单胞菌(2株)、黄单胞菌(1株)以及根瘤菌(1株),与对照相比CZ29在促进株高伸长极显著(P < 0.01),CZ29侵染后番茄株高为对照组的1.46倍;此外,测试内生细菌中8株促进番茄根的伸长,其中MR56、GF12和CZ29侵染后的番茄根长比对照组根长超出15%以上。对46株内生细菌16S rDNA序列与番茄根内生细菌前100核心OTU序列进行系统发育分析结果表明,测试内生细菌聚类到假单胞菌目、肠杆菌目、根瘤菌目、伯克氏菌目、芽孢杆菌目、黄单胞菌目以及黄杆菌目。此外聚类到假单胞菌目和根瘤菌目的内生细菌分别与番茄根内高丰度的OTU_3(Pseudomonas)和OTU_23(Rhizobium)聚在一起,表明测试假单胞菌以及根瘤菌是番茄根内主要促生效果的核心类微生物。分离到的具有促生的芽孢杆菌种类最多,但假单胞菌和根瘤菌在根内丰度较高,作为健康番茄根内生微生物组中最主要的群体,因此芽孢杆菌、假单胞菌以及根瘤菌具有巨大促生潜力,可以作为生物菌肥探索为宿主提供营养,并合理开发利用微生物资源以更好发展农业。

       

      Abstract: By taking 46 endophytic bacteria isolated from tomato plants as the research objects, the endophytic bacteria from tomato roots were used to infect the tomato seeds to study the effects on tomato plant growth. Then, the phylogenetic trees were further constructed by using the sequences of the 16S rDNA combined with the previously open OTU (Operational Taxonomic Unit) sequence of tomato root to analyze the species and abundance of major growth-promoting endophytic bacteria. The results of the experiment showed that the tested endophytic bacteria could promote the fresh weight of tomato plants. Bacillus (3 strains), Pseudomonas (2 strains), Xanthomonas (1 strain) and Rhizobium(2 strains) could significantly promoted the fresh weight of tomato plants (P < 0.05), while compared with the control group, GF12 has promoted the fresh weight most significantly (P < 0.01), and the increase of endophytic bacteria of GF12 on the fresh weight of tomato plants was 1.69 times that of the control group. There were 9 endophytic strains with significant promotion of the plant height, including Bacillus (5 strains), Pseudomonas (2 strains), Xanthomonas (1 strain) and Rhizobium (1 strain). CZ29 significantly promoted the plant height and elongation compared with the control group (P < 0.01), and the tomato plant height after the infection of CZ29 was 1.46 times that of the control group. In addition, the tested 8 endophytic bacteria promoted the elongation of tomato roots, among which the tomato root length after the infection of MR56, GF12 and CZ29 was more than 15% longer than that of the control group. The phylogenetic analysis of the 16S rDNA sequence of 46 endophytic bacteria and the first 100 core OTU sequences of endophytic bacteria in tomato roots showed that the tested endophytic bacteria were clustered into Pseudomonadales, Enterobacteriales, Rhizobiales, Burkholderiales, Bacillales, Flavobacteriales and Xanthomanadales. In addition, the endophytic bacteria clustered into Pseudomonas and Rhizobium were clustered together with OTU_3 (Pseudomonas) and OTU_23 (Rhizobium) with high abundance in tomato roots, indicating that Pseudomonas and Rhizobium were the core microorganisms for the main growth promoting effect in tomato roots. There were the most types of probiotic Bacillus isolated which had the effect of promoting growth, but Pseudomonas and Rhizobium were abundant in roots, which were the most important groups in the endophytic microbiome of healthy tomato roots. Therefore, Bacillus, Pseudomonas and Rhizobium had great potential to promote growth, which could be used as biological fertilizer to provide nutrition for the host, and rationally develop and utilize microbial resources to better develop the agriculture.

       

    /

    返回文章
    返回