Abstract:
In order to explore the feasibility of preparing the repairing additive of soil from oyster shells, the effects of oyster shells treated with the subcritical technology on the adsorption of heavy metal were studied. The oyster shells had strong adsorption for the heavy metal ions after the treatment of subcritical hydrolysis. The experiments were carried out by setting different temperature and pressure treatments, different treatments at the same temperature, different additive amounts of oyster shell powder, and different initial concentrations of heavy metals. And then the analysis and detection on the elements were conducted by using the inductively coupled plasma atomic emission spectrometer (ICP-AES). The results showed that the adsorption of the oyster shell powder for the heavy metals such as Cd, Pb, Cr, Zn and Cu was in accordance with the quasi-second-order kinetic equation and Langmuir isothermal model. The optimal additive amount of oyster shell powder to remove Cd which prepared by subcritical technology was 5-10 g·L
-1, and the optimal additive amount of oyster shell powder to remove Pb, Cr, Zn and Cu was 1-5 g·L
-1. The removal rates of Cd, Pb, Cr, Zn and Cu by the oyster shell powder could reach 95.99%, 98.68%, 98.67%, 93.22% and 80.51%, respectively.